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Abstract 

 
Intrusion alert correlation techniques correlate 

alerts into meaningful groups or attack scenarios for 
the ease to understand by human analysts. These 
correlation techniques have different strengths and 
limitations. However, all of them depend heavily on the 
underlying network intrusion detection systems 
(NIDSs) and perform poorly when the NIDSs miss 
critical attacks. In this paper, a system was proposed 
to represents a set of alerts as subattacks. Then 
correlates these subattacks and generates abstracted 
correlation graphs (CGs) which reflect attack 
scenarios. It also represents attack scenarios by 
classes of alerts instead of alerts themselves to reduce 
the rules required and to detect new variations of 
attacks. The experiments were conducted using Snort 
as NIDS with different datasets which contain 
multistep attacks. The resulted CGs imply that our 
method can correlate related alerts, uncover the attack 
strategies, and can detect new variations of attacks. 
 
1. Introduction 
 

When the NIDS detects a set of attacks, it will 
generate many alerts that refer to security breaches. 
Unfortunately, the NIDS cannot deduce anything from 
these separated attacks. So, alert correlation is an 
important solution to link separated attacks, to give 
alerts another meaning, and to infer attack scenarios. 

Alert correlation and analysis is a critical task in 
security management. Recently, several techniques and 
approaches have been proposed to correlate and 
analyze security alerts, most of them focus on the 
aggregation and analysis of raw security alerts, and 
build attack scenarios.  

An interesting method is the work of Ning et al. [1]. 
They were a proposed alert correlation model based on 
the observation that most intrusions consist of many 
stages, with the early stages preparing for the later 

ones. They were collected alerts from NIDS, correlated 
off-line, and tried to draw a big picture (through CGs) 
of what happens in the network. However, there are 
some shortcomings associated with this method: 
• The graph explosion problem that occurs in the 

generated CGs makes the resulted graphs complex 
and hard to understand. 

• Huge number of rules used to draw these graphs 
representing alerts' prerequisites and consequences. 

• The affects of the missed attacks by NIDS resulted 
graphs that yield separated CGs.  
To address the disadvantages of this method, we 

have proposed a system that can address these 
problems. The proposed system contains four 
components: alert prioritization, alert classification, 
alert aggregation, and the correlation graph generation. 
Also Breadth-First search algorithm was used to find 
the related attacks. The resulted CGs show that the 
proposed system can correlate related alerts, uncover 
the attack strategies, and can effectively simplify the 
analysis of large amounts of alerts. 

The contribution of this paper is three folds: First, 
generate compressed and easy to understand CGs 
which reflects attack scenarios. Second, represent the 
scenarios by alert classes instead of alerts themselves 
which reduce the required rules. Finally, the ability to 
pass the missed attacks, by NIDS, that are located in 
the middle of the scenarios. 

The rest of this paper is organized as follows: 
Section 2 presents related works. Section 3 states the 
proposed system components in detail. Section 4 
presents our experiments and results. The discussion of 
results is presented in Section 5 and section 6 
concludes this paper.  
 
2. Related Work 

 
Many researchers propose systems that aim to build 

attack scenarios depending on various techniques. Dain 



et al. [2] use data mining approach to combine the 
alerts into scenarios in real time. The probabilistic alert 
correlation [3] based on the similarities between alerts 
to correlate them. Measures are defined to evaluate the 
degree of similarity between two alarms. Qin et al. [4] 
present an alert correlation system combining a 
Bayesian correlation with a statistical correlation using 
a time series-based causal analysis algorithm. 

The work of Ning et al. [1] generates CGs 
depending on pre and post-conditions of individual 
alerts. They propose an alert correlation model based 
on the inherent observation that most intrusions consist 
of many stages, with the early stages preparing for the 
later ones.  The correlation model is built upon two 
aspects of intrusions that are, Prerequisites (the 
necessary conditions for an intrusion to be successful) 
and Consequences (the possible outcome of an 
intrusion). With knowledge of prerequisites and 
consequences, the correlation model can correlate 
related alerts by finding causal relationships between 
them. They used hyper alert correlation graphs to 
visually represent the alerts, where each node 
represents a hyper alert and the edges represents 
prepares for relation.  

 
3. The Proposed System 
 

The proposed system in this paper is composed of 
four parts: Prioritization, Classification, Aggregation, 
and Correlation Graph Generation. The proposed 
system as shown in Fig. 1 takes as input the raw alerts 
that are issued from NIDS then enhances alerts quality 
using alert prioritization. After that the alert 
classification is performed using alert abstraction. The 
third component tries to merge the similar classes 
produced from the classification process. Finally, the 
alerts correlation happens to produce CGs.  

 

 
 
The aim of alert classification and aggregation 

components is to handle the elementary alerts 
produced by NIDS due to a certain attack, cluster them 
to produce a higher-level alert message, called meta-
alert (MA) that summarizes the characteristics of the 
detected attacks. 

A meta-alert is characterized by: alert class, which 
is the generalized alert type or subattack name, the 

source IP address, the target IP address, time 
information, and a reference to the log file of the NIDS 
so that further investigation on the results can be 
carried out. 

 
3.1. Prioritization 
 

Alert prioritization is performed to assess the 
relative importance of alerts generated by the sensors. 
This method has to take into account the security 
policy and the security requirements of the site where 
the correlation system is deployed [5]. Therefore, 
prioritizing of alerts aids in substantial reduction of 
alerts volume. 
  
3.2. Classification and Aggregation 

 
In this paper the classification was performed by 

using alerts abstraction. The alert classification scheme 
is designed to categorize alerts into groups that most 
effectively indicate their stage in a multistage attack. 
An alert can be part of multiple classes. Each class has 
its name that indicates the general category, in other 
words any alert can belong to the following classes: 
enumeration, host probe, service probe, service 
compromise, user access, root or administrator access, 
dos, system compromise, sensitive data gathering, 
active communication remote, or Trojan activity. 
Alerts descriptions were taken from the Snort signature 
database [6].  

Aggregation component will merge the similar 
alerts resulted from previous component within 
specified time window. The clustering we refer to in 
this paper was performed by the classification followed 
by aggregation. 

 
3.3. Correlation Graph Generation 
 

This is the last stage of the proposed system that 
contains alert correlation and CG generation. In this 
paper, we have proposed a technique that builds simple 
CGs using alert clustering and correlation. The 
correlation depends on the Relation Matrix (RM) that 
contains the similarities between every two MAs, and 
few predefined rules. There are three measurements 
that have been used in this paper listed below. The 
three measurements are numerical values. 

• Msr1: How much Similar_SourceIP(MA1,MA2)? This 
feature computes the common similar bits of two IP 
addresses from the left. Then the result divided by 
32. 

 

Figure 1. The proposed system architecture 



• Msr2: How much Similar_TargetIP(MA1,MA2)? The 
value of this feature is computed such as the 
previous one. 

• Msr3: TargetIP(MA1)=SourceIP(MA2)? This feature 
is necessary because sometimes the attacker use one 
victim as a step stone to compromise another victim. 

It is very important to find the strength between any 
two MAs to correlate them together or not. 
Computation of this strength depends on the similarity 
of measurements. The correlation strength will be 
computed for all the MAs which assumed to be in time 
order. We suggest representing the correlation strength 
of any related MAs in a triangle matrix (i.e. RM). In 
this matrix, V(1,3), for example,  means the relation 
between MA1 and MA3 and also MA1 precedes MA3. 

Equation (1) was used to compute the correlation 
strength value between any two MAs in RM. The 
IsSuccessor(j,i) variable in (1) is a Boolean variable 
that determine if MAj can occur after MAi. If so, the 
similarities will be computed otherwise the value is 
zero. The Msrk variable in (1) is the kth measurement's 
value. 
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Correlation graphs can be represented by nodes (i.e. 

the subattacks) and arcs (i.e. the relation between two 
subattacks). The direction of the arcs specifies the 
temporal relation. The subattack was represented here 
by MA.  

Definition1. Given MA contains one or more alerts. Let 
SMA be the set of MAs and let t(MA) is the earlier time 
in which MA has occurred. Thus it can be said that 
Class(MA) is the class of an MA that represents a 
subattack within a scenario. In a multistep attack, the 
early step of attack prepares for later ones. So we can 
build a relation Prepare-for(MA1,MA2) if Class(MA1) 
prepare for Class(MA2) in the scenario and t(MA1) ≤ 
t(MA2). For any given two MAs α and β ∈SMA, α is 
called a parent of β and β is called a child of α if the 
relation Prepare-for(α, β) is satisfied. It should be 
noted that any child can have more than one parent. ■ 

Applying the Breadth-First search algorithm 
depends on the parent-child relationship that has 
assumed in definition 1. The pseudo code of the 
proposed algorithm that builds CG is shown in Fig. 2.  

Any new MA is not always linked to the latest MA 
in the generated scenario. Instead, it is connected to the 
MAs with which it has a high correlation value in RM. 
So, the representation is useful for inference with 

multiple goals of attackers. The intention of using 
graph representation for attack scenarios is to give the 
security analyst an intrinsic view of the network status.  

The Attach_Threshold is used in the proposed 
algorithm to control the membership of one MA to the 
scenarios. When this threshold is set to be small, the 
resulted graphs will be noisy, whereas when its value is 
set to be high many real attacks do not join to its CGs. 

The generated CGs are concise and abstract, so to 
show more details about the low-level alerts we can 
drill-down using the references to the log file that exist 
in MAs.  

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

4. Experiments and Results 
 

In this section, we report the experiments we 
performed to evaluate the effectiveness of the proposed 
method in constructing attack scenarios. The 
experiments were conducted with the 2000 DARPA 
datasets [7] and Defcon 8 datasets [8]. Snort (Version 
2.6.1) [9] was used in this experiments because it is a 
freely available NIDS. 

  
4.1. DARPA Dataset Experiment 
 

The 2000 DARPA intrusion detection scenario 
specific datasets include LLDOS 1.0 and LLDOS 2.0.2 
[7]. LLDOS 1.0 contains a series of attacks in which 
the attacker probes the network, probes the active hosts 
for Solaris Sadmind, breaks into these hosts with the 
Solaris Sadmind vulnerability, installs the Msream 
DDos software on the three compromised hosts, and 
actually launches a DDos attack against an off-site 
server.  

Each dataset includes the network traffic collected 
from both the DMZ and the inside part of the 
evaluation network. We have performed four sets of 

Figure 2. Pseudo-code of graph generation 
algorithm 

Input:  Stream of meta-alerts in time order  
Output: Correlation Graphs 
Begin 
1: Initialize Queue Q and Graph G; 
2: Do until All MA∈ RM visited { 
3:     Get new unvisited MA and put it in Q and G; 
4:     While Q not empty{ 
5:         ActiveMA←Q.dequeue; 
6:         S← set of ActiveMA's children and not visited yet; 
7:         Q.enqueue all S elements; 
8:         Set ActiveMA as visited; 
9: G←G ∪ ActiveMA (Connect ActiveMA to      

appropriate  MAs in G using Attach_Threshold); 
10:     } 
11:     Output G as detected Correlation graph; 
12: } 
End 



experiments, each with either the DMZ or the inside 
network traffic of one dataset. The CGs discovered 
from the inside network traffic in LLDOS 1.0 were 
shown in Fig. 3. Each node in Fig. 3 represents a MA. 
The text inside the node is the class of the MA 
followed by the MA ID. There are 15 MAs in this graph 
and there are no false alerts with it. Fig. 3 contains 
three subgraphs from one attacker (the source IP 
address is 202.77.162.213) to three victims, i.e. 
destination IP addresses 172.16.112.10, 172.16.115.20, 
and 172.16.112.50. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
As shown in Fig. 3, we got three disjoint correlation 

graphs due to Snort's fails to report some parts of the 
scenario, i.e. communication of the DDoS Trojans on 
the compromised hosts and also DDoS attack. 

To test the effectiveness of the proposed system, we 
have used the measures of completeness and soundness 
defined in [1]. The soundness measurement (Rs) 
evaluates the rate of true alerts that appear in CG. The 
completeness measure (Rc) looks for missing true 
alerts from CG. The values of these measures can be 
computed from (2). The results of two measures are 
shown in Table 1. 

 

# #
,

# #

correctly correlated alerts correctly correlated alerts
Rc Rs

related alerts correlated alerts
= =  (2) 

 
It should be noted that the missed alerts by NIDS 

degrade the system effectiveness and this was the 
situation in our experiment, where Snort has missed 
many real alerts that affect the completeness measure 
results as shown in Table 1. Also the experiments were 
produced accepted values for the soundness measure 
except LLDOS 2.0.2 inside zone because there are ten 
incorrectly correlated alerts. This occurred because the 
Attach_Threshold value has reduced to catch all the 
real alerts. 

 

 
4.2. Def Con 8 Dataset Experiment 
 

As another case study, we applied our method on 
the Def Con 8 Capture The Flag (CTF) datasets [8]. 
Unfortunately, due to the nature of the Def Con 8 CTF 
datasets, we did not have any information about its 
scenarios. Thus, we only analyze the resulted CGs and 
discuss some of its scenarios.  

The resulted alerts from snort (after prioritization) 
were 1,847,745 raw alerts. Scanning related alerts 
divided into two groups: host probe and service probe. 
Host probe alerts account for 1,255,881 alerts (67.9 %) 
whereas service probe alerts account for 425,398 alerts 
(23%). Other alerts include service compromise, DDos, 
Dos, etc, account for 166,466 alerts (9.1%). The 
remaining MAs after clustering are 170,404. 

 

 
 
There are many scenarios in this dataset, Fig. 4 

shows one of the generated CGs that contains one 
scenarios. The attacker in this CG is 10.20.11.191 and 
the victim is 10.20.1.8. In this scenario, the attacker 
scans the host to see if it is a live and this is appeared 
as host probe. After that he/she scans victim's ports to 
gather the active services and this is appeared as 
service probe. Then he/she exploits the web service by 
buffer overflow attack (i.e. CGI applications) this is 
abstracted in this figure as service compromise. After 
that some user account information were stolen, 
represented in the figure as sensitive data gathering. 

Table 1 Correlation effectiveness of the 
proposed system 

 

LLDOS 1.0 LLDOS 2.0.2  
DMZ Inside DMZ Inside

# Correlated Alerts 122 60 6 24 
# Correctly Correlated Alerts 122 60 6 14 
# Incorrectly Correlated Alerts 0 0 0 10 
# Related Alerts 136 72 6 16 
# Missed Alerts By Snort 14 12 0 2 
Completeness Measure Rc 89.7% 83.3% 100% 87.5%
Soundness Measure Rs 100% 100% 100% 58.3%

 
Figure 4. The CG generated from Def Con 8 

dataset 

 
 

Figure 3. The CGs discovered in the LLDOS 
1.0 inside zone 



Finally the attacker used this information to log as a 
normal user. 

 
5. Discussion 
 

From the literature, Ning et al. [1] have proposed a 
correlation method to extract attack strategies from 
intrusion alerts, which is similar to this work. The 
experimental results on the DARPA 2000 dataset and 
Def Con 8 show that both approaches produce similar 
attack strategies. However, our approach is different 
from theirs in three folds. First, they have used pre-
/post-conditions to correlate alerts whereas we use 
scenario based approach. Second, we use few rules to 
produce these results whereas they have defined a large 
number of rules in order to correlate the alerts. And 
finally, we have represented the alerts by classes which 
reduce the required rules. By using alert's classes to 
represent scenario rules, there is ability to detect new 
variations of attacks. In other words, our system is 
more adaptive to the emerging of new attacks because 
we focus on alerts classes instead of alerts themselves. 

 

 
The proposed method provides a high-level 

representation of correlated alerts that reveals the 
causal relationships between them. As we have seen in 
Section 4, CGs generated by our implementation 
clearly show the strategies behind these attacks. One 
advantage of our method is the compressing of the 
resulted CGs. The CG shown in Fig. 5 discovers the 
attacks in DARPA LLDOS1.0 (inside zone) drawn by 
Ning et al. [1]. They use Real Secure as NIDS which 
did not miss the last two stages of the scenario like 
Snort. It can be noted in Fig. 3 (comparing with Fig. 5) 
the simplicity and compression of CG. 
 

6. Conclusion 
 

This paper presented a systematic method for 
constructing attack scenarios (or CGs) through alert 
correlation, using predefined attack scenarios. The 
proposed system is composed of four components 
which filter out the unnecessary alerts, cluster the alerts 
as subattacks, and then generate CGs using a small set 
of rules and Breadth-First search algorithm. The 
generated CGs by correlation engine correctly reflect 
the multistage attacks in the dataset.  
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Figure 5.  Ning et al. CG for LLDOS 1.0 inside 

zone 


